This page is hosted on AFS file server space, which is being shut down on November 13, 2018. If you are seeing this message, your service provider needs to take steps now. Visit afs.unc.edu for more information.
 


Class Notes
This outline reflects a future extended version of the course that is not yet completely implemented; not-yet-existing modules are shaded in light blue; the numbers of existing modules are consistent with those on the class schedule in the syllabus.
Part 1
SIMPLE LINEAR REGRESSION
Module 1
Simple Linear Regression
Module 2
Statistical Inference
Module 3
Diagnostics & Remedies
Part 2
MULTIPLE LINEAR REGRESSION & GENERAL LINEAR MODEL
Module 4
Matrix Representation of the Regression Model
Module 5
Multiple Regression & the General Linear Model
Module 6
Polynomial Regression & Interactions
Module 7
Qualitative Independent Variables
Module 8
General Linear Tests
Module 9n   Model Building & Specification
Part 3
COMPLICATIONS OF MULTIPLE REGRESSION: 
DIAGNOSTICS & REMEDIES
Module 10
Outlying & Influential Observations
Module 9   Partial Regression Plots
Module 11
Collinearity & Ridge Regression
Module 12
Heteroskedasticity
Module 13
The Bootstrap
Part 4
SPECIAL DATA STRUCTURES
Module 14
Autocorrelation in Time Series Data
Module 14b X Pooled Time Series of Cross Sections
Module 14c X Multi Level Models
Module 16 X Missing Values & Selection Bias


 


STATISTICAL TABLES


REFERENCES