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1 Introduction

Module 4 covers the following topics

• properties of, and operations on, matrices and vectors

• matrix representation of the linear regression model, both simple and mul-
tiple

• derivation of the most important aspects of the regression model, including
estimation of the parameters and ANOVA decomposition

• derivation of the covariance matrices and standard errors of the estima-
tors needed for statistical inference (calculation of con�dence intervals and
hypothesis tests)

The purpose of all this is to develop the formal statistical machinery of the
multiple regression model to clear the way for discussion of substantive and
practical aspects of multiple regression in Module 5. This material is in part
foundational: matrices are almost indispensable for advanced methods beyond
regression analysis. Readings for Module 4 are ALSM5e ???; ALSM4e Chapter
5 and part of Chapter 6 (pp. 225-236).

2 Matrices

Matrix notation represents a set of conventions to represent tables of numbers
and operations on these numbers. It allows representation of the simple and
multiple regression model in a compact form.
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2.1 Matrices

A matrix is a rectangular array of numbers or symbols. Examples of matrices
are

A =


2.1 1.7
4.0 −2.3
5.0 0.3
4.7 −1.5

 B =

1.0 .32 .55
.32 1.0 .61
.55 .61 1.0

 D =

−1 0 0
0 2 0
0 0 4

 C =

c11 c12

c21 c22

c31 c32


Dimensions of a matrix are speci�ed as the number of rows followed by the

number of columns: A is 4 × 2, B and D are 3 × 3, and C is 3 × 2, . An
element of a matrix C is identi�ed as cij with the �rst subscript referring to the
row and the second to the column. A square matrix is a matrix with the same
number of rows and columns. B and D are square matrices. B and D are also
symmetric matrices: each row is identical with the same-numbered column, so
the matrix is symmetrical around the leading or main diagonal that runs from
upper-left to bottom-right corner. (A symmetric matrix has to be square, but
a square matrix is not necessarily symmetric.) Matrix D is a diagonal matrix ;
all entries are zero except those on the main diagonal. A diagonal matrix with
has only 1s on the main diagonal is designated I and called an identity matrix.
A matrix of all zeroes is called a null matrix. Matrices are usually designated
by bold capital letters. Examples of an identity matrix and a null matrix are

I =

1 0 0
0 1 0
0 0 1

 0 =
[
0 0 0
0 0 0

]

2.2 Transpose of a matrix

The transpose of the matrix A, denoted A′, is the matrix obtained by inter-
changing each row by the same-numbered column, so that the �rst column of A
becomes the �rst row of A′, and so on. (Formally, if A = [aij ] then A′ = [aji].)
For example the transpose A′ of the matrix A above is

A′ =
[
2.1 4.0 5.0 4.7
1.7 −2.3 0.3 −1.5

]
(I �nd it useful to visualize the transpose operation with a special hand move-
ment which I will demonstrate in class.) An alternative notation found for the
transpose A′ is AT . The transpose of a 4 × 2 matrix has dimensions 2 × 4
because rows and columns are interchanged. A symmetric matrix is equal to its
transpose so that A′ = A.

2.3 Vector and scalars

A single row or column of numbers is called a vector. Column vectors are
designated by lower case bold-face letters, e.g. a. Row vectors are viewed as
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transposes of column vectors and marked with a prime, e.g. b′. (When used
alone the term vector refers to a column vector.) Single numbers, as used in
ordinary arithmetic, are called scalars. Scalars are usually designated by lower
case roman or Greek letters in regular weight, e.g. c or λ (lambda). The
following are examples of vectors and scalars.

a =

1.2
3

1.7

 b′ =
[
1.1 .5 2

]
c = 22.6 α = .05

2.4 Equality of matrices

Two matrices A and B are equal if they have the same dimensions and all
corresponding elements are equal.

2.5 Addition & subtraction of matrices

The matrices involved in addition or subtraction must have the same dimen-
sions. Two matrices are added together by adding algebraically the correspond-
ing elements of the two matrices. A matrix may be subtracted from another
by reversing the sign of its elements and then adding the corresponding ele-
ments. Two columns vectors of the same length, or two row vectors of the same
length, may be added or subtracted in the same way. Examples of addition and
subtraction are shown below.

A =

0 4
2 5
7 1

 B =

−1 3
3 −2
5 0

 A + B =

−1 7
5 3
12 1

 A−B =

 1 1
−1 7
2 1


2.6 Multiplication of vectors and matrices

A row vector a′ and a column vector b of the same length may be multiplied
by forming the sum of the products of the corresponding elements, as follows:

a′b =
[
2 4 1 3

] 
1
3
5
2

 =


2× 1 = 2
4× 3 = 12
1× 5 = 5
3× 2 = 6

a′b = 2 + 12 + 5 + 6 = 25


The result of multiplying a row vector by a same-length column vector is a

scalar. However the result of multiplying a column vector by a row vector is
entirely di�erent. In multiplying vectors and matrices the order of multiplication
matters (see below).

To multiply a matrix A by the matrix B one multiplies each of the row
vectors of A in turn by each of the column vectors of A. Each of the vector
multiplications yields a single number that becomes the element (row# of A,
column# of B) of the product matrix AB. The result matrix AB has as many
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rows as the �rst matrix (A) and as many columns as the second matrix (B). For
multiplication to be possible the rows of the �rst matrix (A) and the columns
of the second matrix (B) must be of equal length. Thus the second dimension
(number of columns) of A must be equal to the �rst dimension (number of rows)
of B, in which case the matrices are said to be conformable for multiplication.
For example one can multiply a 3 × 2 matrix by a 2 × 5 matrix (the product
being of dimensions 3 × 5), or a 1 × 5 vector by a 5 × 1 vector (the product
being a 1× 1 scalar), or a 5× 1 column vector by a 1× 5 row vector (the result
being a 5 × 5 matrix). In each case for the matrices to be conformable the
middle numbers have to be equal. The dimensions of the product are given by
the outside dimensions.

A =

0 4
2 5
7 1

B =
[
3 4
2 5

]


AB11 = (0× 3) + (4× 2) = 8
AB12 = (0× 4) + (4× 5) = 20
AB21 = (2× 3) + (5× 2) = 16
AB22 = (2× 4) + (5× 5) = 33
AB31 = (7× 3) + (1× 2) = 23
AB32 = (7× 4) + (1× 5) = 33

 (1)

AB =

 8 20
16 33
23 33

 (2)

These principles generalize to longer series of matrix multiplications. If W, X,
Y, and Z are, respectively, of dimensions 4× 2, 2× 3, 3× 7, and 7× 5, then the
multiplication WXYZ can be carried out and the result has dimensions 4 × 5
(given by outermost dimensions in the series). The principle holds for vectors,
viewed as n× 1 or 1× n matrices. Thus the product of a 1× 4 row vector by a
4 × 1 column vector is a 1 × 1 scalar; the product of a 1 × 4 column vector by
a 4 × 1 row vector is a 4 × 4 matrix. When one wants to specify the order of
multiplication of the product AB one can say that A premultiplies B or that
B postmultiplies A.

2.7 Special cases of matrix multiplication

Work through your own examples to derive the following rules.

1. Pre- or postmultiplying a matrix A by a null matrix 0 yields a null matrix
(i.e., a null matrix acts like zero in ordinary arithmetic)

2. Pre- or postmultiplying a matrix A by an identity matrix I leaves A
unchanged (i.e., an identity matrix acts like a 1 in ordinary arithmetic)

3. Premultiplying a matrix A by a diagonal matrix D rescales the rows of
A by the corresponding elements of D; postmultiplying A by D rescales
the columns of A by the corresponding elements of D.

4. Pre- or postmultiplying a matrix by its transpose can always be done and
yields a symmetric matrix: given a matrix X, X′X and XX′ always exist.
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2.8 Multiplying a vector or matrix by a scalar

To multiply by a matrix or vector by a scalar, multiply each element of the
matrix or vector by the scalar. In a series of matrix multiplications the position
of a scalar does not matter and can be changed as desired, e.g. if k is a scalar
then AkIA′ = kAIA′ = AIA′k. One can factor out a scalar that is a common
factor of every matrix element.

3 Systems of Equations & Matrix Inverse

3.1 Matrix representation of systems of equations

Matrices are especially useful to represent systems of equations. For example
de�ning b′ =

[
b1 b2

]
(two unknown quantities), c′ =

[
20 10

]
and

A =
[
2 4
3 1

]
one can represent the system of equations

2b1 + 4b2 = 20
3b1 + b2 = 10

as [
2 4
3 1

] [
b1

b2

]
=

[
20
10

]
or

Ab = c

Note how compact the matrix representation is: the very same expression
Ab = c can represent two equations with two unknown as well as 1000 equations
with 1000 unknowns. To solve a system of equations requires the inverse of a
matrix (see next).

3.2 Inverse of a matrix

In ordinary algebra the inverse of a number x is its reciprocal 1/x or x−1.
Multiplying by the reciprocal is equivalent to dividing, so a(1/x) = a/x. For
matrices there is no direct equivalent of division but the matrix inverse is the
equivalent of the reciprocal; multiplying by the inverse is the matrix equivalent
of dividing. The inverse of a matrix A, denoted A−1, is a matrix such that
A−1A or AA−1 equals I, an identity matrix (the same way that (1/a)a = 1 for
scalars). An example is

A =
[
2 4
3 1

]
A−1 =

[
−.1 .4
.3 −.2

]
(3)
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One can verify that AA−1 = I. Only square matrices can have inverses, but
not all of them do. If a matrix has some rows or columns that are linearly
predictable from others, it does not have an inverse (see �Linear dependence &
rank� below). A matrix that has no inverse is called singular. The inverse of
a matrix allows solving systems of equations. Given the system of equations
Ab = c, if A has an inverse one can solve for b by premultiplying both sides of
the equation by A−1 like this:

Ab = c

A−1Ab = A−1c

Ib = A−1c

b = A−1c

For example the system of equations Ab = c above can be solved for b by
forming the product A−1c, i.e.[

−.1 .4
.3 −.2

] [
20
10

]
=

[
2
4

]
so the solution is b1 = 2 and b2 = 4.

3.3 Calculating inverses

Loehlin (2004, p. 242-243) writes: �Obtaining the inverse of a matrix tends
in general to be a large computational task. Let the computer do it. You can
always check to see whether the results it has given you is correct by carrying out
the multiplication AA−1, which should equal I within rounding error.� Some
useful properties of inverses are:

1. (A′)−1 = (A−1)′, i.e. the inverse of the transpose is the transpose of the
inverse

2. (A−1)−1 = A, i.e. taking the inverse of an inverse yields the original
matrix

3. The inverse of a symmetric matrix is also symmetric

In a few special cases matrix inversion does not require extensive computations:

1. The inverse of an identity matrix is itself, i.e. I−1 = I

2. To invert a diagonal matrix one simply replaces each diagonal element by
its reciprocal

3. The inverse of a 2 by 2 matrix can be obtained as follows:

If the original matrix is [
a b
c d

]
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the inverse is obtained as

1/(ad− bc)
[

d −b
−c a

]
In words, to obtain the inverse interchange the diagonal elements a and d, change
the sign of the two o�-diagonal elements b and c, and multiply the result by the
scalar 1/(ad − bc). One can verify this procedure by calculating the inverse of
the matrix A introduced above.

3.4 Inverse or transpose of a matrix product

Two important properties of a product of matrices are

1. (ABCD)′ = D′C′B′A′, i.e. the transpose of a product of matrices is
equal to the product of the transposes of the matrices, taken in reverse
order

2. (ABCD)−1 = D−1C−1B−1A−1, i.e. the inverse of a product of matrices
is equal to the product of the inverses of the matrices, taken in reverse
order

For the second property to hold all the matrices have to be square, of the same
order, and non-singular (otherwise multiplication would not be possible and/or
the necessary inverses would not exist).

3.5 Eigenvalues & eigenvectors

This will be added later.

3.6 Linear dependence & rank

Consider the 5× 4 matrix

X =


1 2 1 0
1 4 1 0
1 3 1 0
1 7 0 1
1 4 0 1


X can be viewed as composed of 4 columns vectors

[
c1 c2 · · · c4

]
. The

columns of a r × c matrix are said to be linearly dependent when c scalars
λ1, λ2, · · · , λc not all equal to 0 can be found such that

λ1c1 + λ2c2 + · · ·+ λccc = 0

If this relation only holds when all the λ's are zero then the columns are linearly
dependent. The columns of the matrix X are not independent.

Q - Find 4 λ's not all zero such that the relation above holds.
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A - One possible answer is 1, 0,−1,−1.
The rank of a matrix is the maximum number of linearly independent

columns in the matrix.
Q - What is the rank of X?
An important property of matrices is that if the columns are independent,

so are the rows.

4 Random Vectors

A random vector is a vector containing elements that are random variables.
For example in the simple regression model one can de�ne the n × 1 vector ε
containing the errors for each observation, so that ε′ =

[
ε1 ε2 · · · εn

]
. (Note

that the vector is given by its transpose to save vertical space in text.)

4.1 Expectation of a random vector

The expectation of a random vector is the the vector of expectations of the ran-
dom variables constituting the elements. For example in the simple regression
model E{ε} =

[
E{ε1} E{ε2} · · · E{εn}

]
The regression model assumes that the

expectation of the distributon of the error for each observation is zero. This is
the same as assuming E{ε} = 0, a null vector. (For de�nition of expectation or
expected value of a random variable see ALSM5e Appendix A, Equations A.11
and A.12.)

4.2 Variance-covariance matrix of a random vector

The variance-covariance matrix or covariance matrix of a random vector ε with
expectation is denoted σ2{ε} (with bold-face sigma) and contains the variances
of the elements on the diagonal and the covariances of the elements o� the
diagonal. For example the covariance matrix of an n× 1 random vector ε is the
n× n matrix

σ2{ε} =


σ2{ε1} σ{ε1, ε2} · · · σ{ε1, εn}

σ{ε2, ε1} σ2{ε2} · · · σ{ε2, εn}
...

...
...

σ{εn, ε1} σ{εn, ε2} · · · σ2{εn}


The covariance matrix is symmetrical.

As an example the simple regression model assumes that the errors are dis-
tributed with constant variance and are uncorrelated (i.e., the covariances of
the errors are zero). These assumptions correspond to a covariance matrix that
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has the same variance σ2 on the diagonal and o�-diagonal elements zero:

σ2{ε} =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
...

0 0 · · · σ2


These assumptions can be represented compactly as

σ2{ε} = E{εε′} = σ2I

4.3 Linear transformations of random vectors

To be added later.

5 Matrix Representation of Linear Regression Model

5.1 Simple Linear Regression

So far we have represented the simple linear regression model as a generic equa-
tion

yi = β0 + β1xi + εi i = 1, ..., n

that is supposed to hold for each observation i = 1, ..., n. If one wanted to write
the model corresponding to each observation in the data set one would have to
write

y1 = β0 + β1x1 + ε1

y2 = β0 + β1x2 + ε2

· · ·
yn = β0 + β1xn + εn

as many time as there are cases.
Matrices provide a more compact representation of the model. One de�nes

vectors and matrices y,X, β, and ε such that

y =


y1

y2

...
yn

X =


1 x1

1 x2

...
...

1 xn

β =
[
β0

β1

]
ε =


ε1
ε2
...

εn


The matrices y,X and ε have n rows corresponding to the n cases in the data
set. The regression model for the entire data set (i.e. the equivalent of the n
separate equations above) can then be written

y = Xβ + ε

The intercept β0 is treated as the coe�cient of the constant term, a variable
that has the same value 1 for all observations.
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5.2 Multiple Linear Regression

The multiple linear regression model can be written as the generic equation

yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βp−1xi,p−1 + εi i = 1, ..., n

where there are now p − 1 independent variables x1 to xp−1 plus the constant
term x0, for a total of p variables (including the constant term) on the right hand
side of the equation. (The reason for setting the index of the last independent
variable to p − 1 is that with this convention the total number of independent
variables, including the constant term, becomes p − 1 + 1 = p, a nice simple
symbol.) De�ning y and ε as before, and

X =


1 x1,1 x1,2 · · · x1,p−1

1 x2,1 X2,2 · · · x2,p−1

...
...

...
...

1 xn,1 xn,2 · · · xn,p−1

β =


β0

β1

β2

...
βp−1


the regression model for the entire data set can be written

y = Xβ + ε

which is precisely the same as for the simple linear regression model. The only
di�erences between simple and multiple regression models are the dimensions of
X (now n×p) and of β (now p×1). As before there are two sets of assumptions
on the errors ε:

• the weaker set assumes that E{ε} = 0 (mean of errors is zero) and that
the errors are uncorrelated and identiccally distributed with covariance
matrix σ2{ε} = E{εε′} = σ2I

• the stronger set assumes in addition that the errors are normally dis-
tributed

It follows from either set of assumptions that the random vector y has ex-
pectation

E{y} = Xb

and the variance-covariance matrix of y is the same as that of ε so that

σ2{y} = E{(y −Xb)(y −Xb)′} = E{εε′} = σ2I

5.3 OLS Estimation of the Regression Coe�cients

The OLS estimator of β are the values of the regression parameters that mini-
mize

Q =
n∑

i=1

(Yi − b0 − b1Xi,1 − b2Xi,2 − · · · − bp−1Xi,p−1)2

10



It can be shown with calculus (ALSM5e ??; ALSM4e pp. 201�202) that the OLS
estimator b of β is the vector b′ =

[
b0 b1 · · · bp−1

]
that is the solution of

the normal equations
X′Xb = X′y

Q � What is the dimension of X′X? Of X′y? What do these matrices contain?
(The normal equations are obtained by setting the partial derivatives of Q

with respect to the regression coe�cients equal to zero and rearranging the
terms.) Note that the normal equations constitute a system of p equations with
p unknowns. The solution b of the system is obtained by pre-multiplying both
sides by the inverse of X′X in the following steps

X′Xb = X′y

(X′X)−1X′Xb = (X′X)−1X′y

Ib = (X′X)−1X′y

b = (X′X)−1X′y

The relation
b = (X′X)−1X′y

is the fundamental formula of OLS.
Q - What are the dimensions of b? Of (X′X)−1X′ ? The Gauss-Markov

theorem says that b is BLUE; can you tell from the formula for b why there is
an L in BLUE?

5.4 Fitted Values ŷi, Residuals ei, & the Hat Matrix H

5.4.1 Fitted Values (aka Predictors aka Estimates)

The �tted (predicted, estimated) value Ŷi of Y for observation i is

ŷi = b0 + b1Xi,1 + ... + bp−1Xi,p−1 i = 1, · · · , n

The n× 1 vector Ŷ containing the �tted values, Ŷ′ =
[
Ŷ1 Ŷ2 · · · Ŷn

]
is

ŷ = Xb

Q - Why does Xb represent the �tted (predicted, estimated) values of Y?

5.4.2 The Hat Matrix H

Replacing b in Xb by its value in terms of the data yields

ŷ = X(X′X)−1X′y

or equivalently
ŷ = Hy
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where
H = X(X′X)−1X′

The matrix H is called the hat matrix. (Q - Why would H be called the �hat�
matrix?) H has the following properties

• H is square of dimension n× n and involves only X (the observations on
the independent variables which are assumed to be �xed constants)

• Thus ŷ is a linear combination of the observations y. H is very important
in outlier diagnostics, as discussed in Module 10. (To anticipate, the diag-
onal elements hii of H measure the leverage of observation i, measured as
the extent to which the value yi of the dependent variable for observation
i a�ects its own �tted value ŷi.)

• H is idempotent, i.e., HH = H. (There is an underlying geometric inter-
pretation, which is that an idempotent matrix represents a projection of
a point in space on a subspace. Idempotency re�ects the fact that once
a point is projected on the subspace, the point stays there if projected
again.)

Q - Can you show why H is idempotent? (Hint: calculate HH, replacing H
by its value in terms of X.

5.4.3 Residuals

The residual ei for observation i is estimated as

ei = yi − ŷi

same as in simple regression. The n × 1 vector e containing the residuals,
e′ =

[
e1 e2 · · · en

]
, is given by

e = y − ŷ

One can derive

e = y − ŷ

e = y −Hy

e = (I−H)y

Q - How does the last expression follow?
Like H, the matrix I−H is n×n, symmetric and idempotent. Furthermore

H(I−H) = 0. (Q�Can you see why?)

5.5 Analysis of Variance (ANOVA)

The ANOVA decomposition of the variation in y is exactly the same as for the
simple regression model, except for the degrees of freedom corresponding to the
number of independent variables (n − 2 in simple regression becomes n − p in
multiple regression).
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Table 1: ANOVA Table
Source Sum of Squares df Mean Squares

Regression SSR =
∑

(ŷi − ȳ)2 p− 1 MSR = SSR/(p− 1)
Error SSE =

∑
(yi − ŷi)2 n− p MSE = SSE/(n− p)

Total SSTO =
∑

(yi − ȳ)2 n− 1 V ar(Y ) = SSTO/(n− 1)

5.5.1 Partitioning of Sums of Squares and Degrees of Freedom

The ANOVA decomposition starts with the identity

(yi − ȳ) = (ŷi − ȳ) + (yi − ŷi)

which expresses, for each observation, the deviation of yi from the mean ȳ as the
sum of the deviation of the �tted value from the mean plus the deviation of yi

from the �tted value. (The identity is tautological, as one can see by removing
the parentheses on the right-hand side; then ŷi and −ŷi cancel out and both
sides of the equation are the same.)

One can take the sums of the squared deviations on both sides of the identity
to obtain the decomposition

SSTO = SSR + SSE

The fact that this decomposition holds is not obvious and must be demonstrated
(see ALSM5e ???; ALSM4e ???). The degrees of freedom (df) associated with
the sums of squares are

• for SSTO df = (n− 1), same as in simple regression (1 df lost estimating
ȳ)

• for SSR df = (p− 1), number of independent variables, not including the
constant

• for SSE df = (n− p), where p is total number of variables, including the
constant (p df lost in estimating regression function to calculate ŷi and
ei)

The mean squares MSR, MSE, and S2 (variance of y) are the sums of squares
divided by their respective df, same as in simple regression. See Table 5.5.1.

5.5.2 (Optional) Sums of Squares as Quadratic Forms

Sums of squares in matrix form are shown in Table 5.5.2. Matrix notation for
SSR and SSTO uses an n × 1 vector u (for unity) with all elements equal to
1. One can verify that y′uu′y is equal to (

∑
yi)2 by noting that y′uu′y =

(y′u)(u′y) = (
∑

yi)(
∑

yi) = (
∑

yi)2.
Table 5.5.2 (Collumn 3) shows that the sums of squares can all be represented

in a form y′Ay where A is a symmetric matrix called a quadratic form. A
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Table 2: ANOVA Table in Matrix Notation
SS Matrix Notation Quadratic Form df

SSR [Hy − (1/n)uu′y]′[Hy − (1/n)uu′y] y′[H− (1/n)uu′]y p− 1
SSE ee′ = (y −Hy)′(y −Hy) y′(I−H)y n− p
SSTO [y − (1/n)uu′y]′[y − (1/n)uu′y] y′[I− (1/n)uu′]y n− 1

quadratic form is an expression of the form y′Ay where A is a symmetric
matrix. Then

y′Ay =
n∑

i=1

aijyiyj

where aij = aji and y′Ay is 1 × 1 (a scalar). One can see that y′Ay is
a second-degree polynomial involving the squares and cross products of the
observations yi. For example 5y12 + 6y1y2 + 4y22 can be represented as y′Ay
where y′ =

[
y1 y2

]
and

A =
[
5 3
3 4

]
A is called the matrix of the quadratic form. (In the underlying geometry n×n
quadratic forms represent distances in n-dimensional space.)

5.5.3 (Optional) Sums of Squares, Quadratic Forms, df, and χ2 Dis-
tributions

It is possible to show that

• if A is the matrix of an idempotent quadratic form, and y a vector of
independent random variables each distributed ∼N(0,1), then y′Ay is
the sum of a number rank(A) of independent random variables z2, each
distributed as χ2(1) (chi-square with 1 df), where rank(A) denotes the
rank of A

• if A is an idempotent square matrix, the rank of A is equal to the trace of
A, denoted tr(A); the trace of a square matrix is the sum of the diagonal
elements of the matrix, so that tr(A) =

∑n
i=1 aii

• the traces of the quadratic forms corresponding to SSR, SSE, and SSTO
are p− 1, n− p, and n− 1, respectively, the same as their df !

• the sum of k independent random variables, each distributed as χ2(1)
(chi-square with 1 df) is distributed as χ2(k) (chi-square with k df)

• thus if y is a vectors of independent random variables each distributed
∼N(0,1), then SSR, SSE, and SSTO are distributed as χ2(p−1), χ2(n−
p), and χ2(n− 1), respectively
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• the ratio of two sums of squares, each divided by its df , is distributed as
F (df1, df2) where df1 and df2 are the df of the numerator and the denom-
inator, respectively; thus for example F∗ = MSR/MSE = (SSR/(p −
1))/(SSE/(n− p)) is distrinuted as F (p− 1, n− p)

5.6 Sampling Distributions of Estimators

5.6.1 Need for the Covariance Matrix of Estimators

As we saw in the context of simple regression, various aspects of the regression
model that are substantively interesting (such as regression coe�cients, the
�tted values ŷi, the residuals ei) are estimated from (i.e., functions of) the values
of the dependent variables (y), which are functions of random errors (ε). Thus
these estimates are themselves random variables. In order to carry out statistical
inference (to do hypothesis tests or calculate con�dence intervals) one needs the
standard error of the estimate. The standard error is the standard deviation of
the sampling distribution of the estimate. The following considerations help in
understanding how these standard errors of estimates are obtained for di�erent
kinds of estimates such as b, ŷh (predicted value of y for a combination Xh of
the independent variables), e, and others.

• the standard error of estimate is the square root of the variance of the
estimate, which is the element in the diagonal of the covariance matrix of
the estimate(s)

• all the OLS estimates (such as b, ŷh, e, and others) are linear functions
of the observed y; thus the estimate(s) are obtained as Ay where A in a
constant matrix expressing the estimate(s) as function(s) of y

• thus, the covariance matrix of the estimate(s) Ay can be obtained by
applying a theorem that states that σ2{Ay} = Aσ2{y}A′ where y is a
random vector

5.6.2 Covariance Matrix of b

One can derive the theoretical covariance matrix σ2{b} of the regression coef-
�cients b with the following steps

b = (X′X)−1X′y = Ay

σ2{b} = σ2{Ay}
= Aσ2{y}A′

= (X′X)−1X′σ2IX(X′X)−1

= σ2(X′X)−1X′X(X′X)−1

so that

σ2{b} = σ2(X′X)−1
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Then the estimated covariance matrix of b is obtained by replacing replacing
the unknown variance of the errors σ2 by its estimated value MSE, as

s2{b} = MSE(X′X)−1

Q�What are the dimensions of this matrix? A�This is a p× p matrix.
The diagonal contains the estimated variances of the elements of b, so that

s2{b0} is in position (1,1), s2{b1} in position (2,2), etc. For statistical inference
the standard error of a regression coe�cient is estimated as the square root of
the corresponding diagonal element of this matrix. The o�-diagonal elements
correspond to the covariances among elements of b.

5.6.3 Variance of Fitted Value ŷh

A combination of speci�c values of the independent variables can be represented
as a row vector x′h =

[
1 xh,1 xh,2 · · · xh,p−1

]
. x′h may correspond to one

of the observations in the data set on which the regression model is estimated,
in which case it represents a row of X, but this is not necessarily the case. x′h
may also represent an �as if� combination of values of the independent variables
that does not exist in the data set. The mean response E{yh} is estimated as

ŷh = x′hb

Note that ŷh = x′hb is a linear function of b. Furthermore ŷh is a scalar,
so its covariance matrix reduces to a single variance. The theoretical variance
σ2{ŷh} of ŷh is derived with the following steps

ŷh = x′hb

σ2{ŷh} = x′hσ2{b}xh

= x′hσ2(X′X)−1xh

= σ2x′h(X′X)−1xh

Then the estimated variance of ŷh is given by

s2{ŷh} = MSE(x′h(X′X)−1xh)

and the estimated standard error of ŷh by

s{ŷh} =
√

MSE(x′h(X′X)−1xh)

Q - What kind of matrix expression is x′h(X′X)−1xh? Hint: it is a q� f�.
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5.6.4 Covariance Matrix of Residuals e

The theoretical covariance matrix σ2{e} of the residuals e is derived in the
following steps

e = (I−H)y

σ2{e} = (I−H)σ2{y}(I−H)′

= σ2(I−H)I(I−H)

= σ2(I−H)(I−H)

so that

σ2{e} = σ2(I−H)

Then the estimated covariance matrix of e is given by

s2{e} = MSE(I−H)

The diagonal of this n × n matrix contains the estimated variances of the ele-
ments of e. This matrix is important in identifying outliers (i.e., observations
with abnormally large residuals) as discussed in Module 10.

5.6.5 MSE, MSR and the Distribution of F*

As discussed later in Module 5, the screening test for the signi�cance of the
regression as a whole is based on the test statistic

F∗ = MSR/MSE

As mentioned above in connection with quadratic forms, F∗ = MSR/MSE is
distributed as F (p− 1, n− p) where (p− 1) and (n− p) are the df of SSR and
SSE, respectively, from the ANOVA table. The expectations of MSR and MSE
are discussed in ALSM5e p. ?; ALSM4e p. 229.

5.7 Matrix Notation in Practice

The following sections show the use of matrix operations to perform multiple
regression with the construction industry data using programs STATA and SY-
STAT.

5.7.1 STATA Example � ho4statamat.do

use craft, clear

* create a constant term that is 1 for each case

generate const=1

* setup matrices y and X (beware that STATA is case sensitive)

mkmat clerks, matrix(y)
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mkmat const season size, matrix(X)

matrix list y

matrix list X

* calculate y'y, X'X and X'y

matrix yy=y'*y

matrix XX=X'*X

matrix Xy=X'*y

* calculate number of observations and df

matrix nobs=rowsof(X)

matrix df=nobs[1,1]-colsof(X)

* calculate b as (X'X)-1X'y

matrix b=syminv(XX)*Xy

matrix list b

* calculate SSE and MSE

matrix SSE=yy-b'*Xy

matrix MSE=SSE/df[1,1]

*calculate covariance matrix of b, call it V

matrix V=syminv(XX)*MSE

*calculate the t-ratio t* for each coefficient (parentheses are not brackets!)

display b[1,1]/sqrt(V[1,1])

display b[2,1]/sqrt(V[2,2])

display b[3,1]/sqrt(V[3,3])

* calculate the 2-sided P-value for each coefficient using the following formula

* where t* is one of the t-ratios you just calculated; copy and paste the

* value of t* from your output each time (abs() is the absolute value function)

display 2*ttail(df[1,1],abs(t*))

* decide which coefficient(s) is (are) significant at the .05 level

* calculate the hat matrix H

matrix H=X*syminv(XX)*X'

matrix list H

* calculate the trace of H (=sum of diagonal elements)

matrix tr=trace(H)

matrix list tr

* guess a general formula giving the value of the trace of H

* end of STATA commands

5.7.2 SYSTAT Example � ho4systatmat.txt

matrix

use craft

mat x = craft(;size season)

mat const = m(9,1,1)

mat x = const||x

mat y = craft(; clerks)

sho x y

mat xpxi = inv(trp(x)*x)
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mat xpy = trp(x)*y

mat b = xpxi*xpy

sho xpxi xpy b

mat h = x*xpxi*trp(x)

sho h

mat i9 = i(9)

sho i9

mat sse = trp(y)*(i9 - h)*y

mat mse = sse/6

sho sse mse

mat varb = mse#xpxi

sho varb

mat se = trp(diag(varb))

sho se

mat se = sqr(se)

mat t = b/se

sho t

calc 2*(1 - tcf(1.401501,6))

calc 2*(tcf(-4.799469,6))
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