This page is hosted on AFS file server space, which is being shut down on November 13, 2018. If you are seeing this message, your service provider needs to take steps now. Visit afs.unc.edu for more information.

BOOTSTRAP ANALYSIS OF YULE'S MODEL FOR OLS AND ROBUST REGRESSION (BISQUARE 3.5)

>USE "D:\mydocs\ys209\yule.syd"

SYSTAT Rectangular file D:\mydocs\ys209\yule.syd,
created Wed Feb 17, 1999 at 09:34:32, contains variables:

 UNION$       PAUP         OUTRATIO     PROPOLD      POP

>rem first use mglh to do a regular regression and save residuals to
>rem identify any influential case
>mglh
>model paup=constant+outratio+propold+pop
>save yuleres1/data
>estimate

Dep Var: PAUP   N: 32   Multiple R: 0.835   Squared multiple R: 0.697
Adjusted squared multiple R: 0.665   Standard error of estimate: 9.547

Effect         Coefficient    Std Error     Std Coef Tolerance     t   P(2 Tail)
CONSTANT            63.188       27.144        0.000      .       2.328    0.027
OUTRATIO             0.752        0.135        0.584     0.985    5.572    0.000
PROPOLD              0.056        0.223        0.031     0.711    0.249    0.805
POP                 -0.311        0.067       -0.570     0.719   -4.648    0.000

                             Analysis of Variance

Source             Sum-of-Squares   df  Mean-Square     F-ratio       P
Regression              5875.320     3     1958.440      21.488       0.000
Residual                2551.899    28       91.139

*** WARNING ***
Case           15 has large leverage   (Leverage =        0.424)
Case           30 is an outlier        (Studentized Residual =        3.618)

Durbin-Watson D Statistic     2.344
First Order Autocorrelation  -0.177

Residuals have been saved.
-------------------------------------------------------------------------------

Plot of Residuals against Predicted Values


 

>use yuleres1

SYSTAT Rectangular file d:\MYDOCS\YS209\yuleres1.SYD,
created Wed Apr 26, 2000 at 20:39:58, contains variables:

 ESTIMATE     RESIDUAL     LEVERAGE     COOK         STUDENT      SEPRED
 UNION$       PAUP         OUTRATIO     PROPOLD      POP

>plot cook/stick line dash=11

Plot cook

>rem calculate percentiles of the f(p, n-p) distribution
>let fperc=100*fcf(cook,4,28)
>rem #4 is 12.9%, #15 61.0%, #30 38.9%; 15 and 30 are influential
>use yule

SYSTAT Rectangular file d:\MYDOCS\YS209\yule.SYD,
created Wed Feb 17, 1999 at 09:34:32, contains variables:

 UNION$       PAUP         OUTRATIO     PROPOLD      POP

>model paup=constant+outratio+propold+pop
>rem now do a bootstrap of the ordinary regression
>output/noscreen
  ** following three lines are not echoed because of the "noscreen"
>save yulebot1/coef
>estimate/sample=boot(1000,32)
>output
  ** bootstrap took 14s on my 266MHz machine at home
>use yulebot1

SYSTAT Rectangular file d:\MYDOCS\YS209\yulebot1.SYD,
created Wed Apr 26, 2000 at 20:50:58, contains variables:

 CONSTANT     OUTRATIO     PROPOLD      POP

>den constant..pop

Density constant..pop

>stats
>stat constant..pop

                       CONSTANT    OUTRATIO     PROPOLD         POP

  N of cases             1000        1000        1000        1000
  Minimum             -35.597       0.286      -1.007      -0.555
  Maximum             194.383       1.365       0.922      -0.076
  Mean                 65.935       0.802       0.033      -0.325
  Standard Dev         41.621       0.188       0.357       0.074

>rem compare "naive" bootstrap estimates of se with original ols regression
>use yule

SYSTAT Rectangular file d:\MYDOCS\YS209\yule.SYD,
created Wed Feb 17, 1999 at 09:34:32, contains variables:

 UNION$       PAUP         OUTRATIO     PROPOLD      POP

>rem now try robust estimation
>nonlin
>model paup=b0+b1*outratio+b2*propold+b3*pop
>robust bisquare=3.5
>estimate

 Iteration
 No.      Loss      B0          B1          B2          B3
   0 .334285D+04 .160251D+02 .942626D+00 .461206D+00-.309542D+00
   1 .171546D+03 .631877D+02 .752095D+00 .556020D-01-.310738D+00
   2 .438515D+03 .627919D+02 .778592D+00 .431065D-01-.311909D+00
   3 .323610D+03 .489783D+02 .863971D+00 .132061D+00-.295710D+00
   4 .282858D+03 .406098D+02 .874491D+00 .193804D+00-.282241D+00
   5 .272693D+03 .368503D+02 .878163D+00 .224339D+00-.277979D+00
   6 .290391D+03 .352696D+02 .880899D+00 .238965D+00-.277741D+00
   7 .294784D+03 .354647D+02 .881415D+00 .238072D+00-.278577D+00
   8 .291739D+03 .356665D+02 .881671D+00 .236611D+00-.279004D+00
   9 .289610D+03 .355798D+02 .881851D+00 .237442D+00-.279020D+00
  10 .289554D+03 .354608D+02 .882028D+00 .238572D+00-.279026D+00
  11 .289789D+03 .354197D+02 .882160D+00 .239034D+00-.279096D+00
  12 .289680D+03 .354128D+02 .882244D+00 .239166D+00-.279161D+00
  13 .289484D+03 .354026D+02 .882301D+00 .239298D+00-.279196D+00
  14 .289383D+03 .353892D+02 .882343D+00 .239445D+00-.279215D+00
  15 .289345D+03 .353796D+02 .882374D+00 .239551D+00-.279230D+00
  16 .289315D+03 .353741D+02 .882397D+00 .239617D+00-.279243D+00
  17 .289286D+03 .353704D+02 .882412D+00 .239661D+00-.279252D+00
  18 .289264D+03 .353675D+02 .882424D+00 .239694D+00-.279258D+00
  19 .289250D+03 .353653D+02 .882432D+00 .239719D+00-.279263D+00
  20 .289240D+03 .353637D+02 .882438D+00 .239737D+00-.279266D+00
  21 .289233D+03 .353627D+02 .882442D+00 .239750D+00-.279268D+00
  22 .289227D+03 .353619D+02 .882445D+00 .239759D+00-.279270D+00
  23 .289224D+03 .353613D+02 .882447D+00 .239765D+00-.279271D+00
  24 .289221D+03 .353609D+02 .882449D+00 .239770D+00-.279272D+00
  25 .289219D+03 .353606D+02 .882450D+00 .239773D+00-.279272D+00
 
BISQUARE robust regression:   27 cases have positive psi-weights
                              The average psi-weight is 0.83243

Dependent variable is PAUP

Zero weights, missing data or estimates reduced degrees of freedom

    Source   Sum-of-Squares    df  Mean-Square
 Regression       86611.288     4    21652.822
   Residual        2919.712    23      126.944
      Total       89531.000    27
Mean corrected     8427.219    26

       Raw  R-square (1-Residual/Total)        =        0.967
Mean corrected R-square (1-Residual/Corrected) =        0.654
          R(observed vs predicted) square      =        0.686

                                                      Wald Confidence Interval
Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
 B0                 35.361       40.768        0.867      -48.975      119.696
 B1                  0.882        0.207        4.264        0.454        1.311
 B2                  0.240        0.343        0.699       -0.470        0.950
 B3                 -0.279        0.096       -2.915       -0.477       -0.081

>rem se for outratio is now 0.207, but this is based on asymptotic
>rem theory, i.e. justified for large samples; use bootstrap as
>rem alternative approach to inference
>model paup=b0+b1*outratio+b2*propold+b3*pop
>robust bisquare=3.5
>output/noscreen
  ** following 3 lines not echoed because of the "noscreen"
>save yulebot2/params
>estimate/sample=boot(1000,32)
>output
>rem bootstrap took 1m 33s on my 266MHz machine at home (OLS was 14 s)
>use yulebot2

SYSTAT Rectangular file d:\MYDOCS\YS209\yulebot2.SYD,
created Wed Apr 26, 2000 at 21:07:56, contains variables:

 B0           B1           B2           B3

>den b0..b3

Density b0..b3

>stats
>stat b0..b3

                            B0          B1          B2          B3

  N of cases             1000        1000        1000        1000
  Minimum             -83.456       0.119      -1.353      -0.723
  Maximum             264.132       1.678       1.258       0.038
  Mean                 62.969       0.880       0.027      -0.326
  Standard Dev         61.126       0.214       0.484       0.124

>rem try still another estimate of se as 1/2 width of 68% central strip
  ** cf Diaconis & Efron Sci. Am. paper
>basic

File in use is d:\MYDOCS\YS209\yulebot2.SYD.
Variables in the SYSTAT Rectangular file are:

 B0           B1           B2           B3

 BASIC statements cleared.

>sort b1

  1000 cases and 4 variables processed.

>if case=160 then print "68% CI LB:",b1
>if case=840 then print "68% CI UB:",B1
>run

68% CI LB:        0.632
68% CI UB:        1.041

SYSTAT file created.

  1000 cases and 4 variables processed.

 BASIC statements cleared.

>calc (1.041-0.632)/2
           0.204

>rem this estimate of se of b1 is 0.204, close to 0.214 (naive) and 0.207 (A.S.E)
>corr
>pearson b0..b3

Pearson correlation matrix

                        B0           B1           B2           B3

 B0                  1.000
 B1                 -0.181        1.000
 B2                 -0.985        0.178        1.000
 B3                 -0.806       -0.138        0.707        1.000

Number of observations: 1000



Last modified 26 Apr 2000